

Renewable Waste to Energy

Why Waste to Energy for Ashland ?

Current Cost of Waste in Ashland: \$100,000+

Bethlehem Landfill Closing in 2027

Anticipated Future Cost Estimated \$300,000+

Renewable Waste to Energy

Why Waste to Energy for Ashland ? Millions of Dollars Projected for Necessary Infrastructure Improvements over the next 10 Years.

- > \$ 9,000,000 for Electric Infrastructure Upgrade
- > \$10,000,000 for Sewer Infrastructure Upgrade
- > \$ 4,500,000 for New Police Station
- \$ 8,000,000 for Water System Upgrade
- \$ 2,000,000 for a New Library and Civic Center
- > \$ 700,000 for New Fire Truck

Renewable Waste to Energy

The U.S. Census Bureau released the latest five-year estimates from the American Community Survey.

According to the latest data the Poorest Town in New Hampshire is:

ASHLAND

A typical household in New Hampshire earns \$83,449 a year.

A typical Ashland household earns just \$33,365 a year, 60.0% less than the statewide median household income.

Renewable Waste to Energy

How Does Waste to Energy Work?

Municipal Waste is Diverted from Landfills

Combustion of Non-Hazardous Municipal Solid Waste (MSA)

- Steam Drives a Generator for Production of Electricity
- **Recycling Precedes Combustion**
- Metals are Recovered from Residual Ash
- A Portion of the Residual Ash is Sold
- Remaining Ash is Removed to Landfill (<10% of original Weight)

Renewable Waste to Energy

What Do We Get from WTE?

Up to a Maximum Production of 12 Megawatts of Electricity

- 1 Megawatt = 1,000,000 Watts = 10,000 100 Watt Light Bulbs
- 6 Megawatts = Energy Sufficient for approx. 4500 Homes for a Year

19,000 Megawatts of Electricity per Year

WTE Site Rendering

WTE Site Location and Layout

Renewable Waste to Energy

How Much Waste Will the Plant Require?

168 Thousand Tons of MSW per Year at Full Capacity

- 90 Thousand Tons for Break-Even Operation

1.2 Million TPY Generated in the State of New Hampshire

700 Thousand TPY of MSW in NH Surrounding Communities

Out of State Sources of MSW Can Be Considered

Renewable Waste to Energy

What is the Cost to Build the Plant?

Capitalized with 135 Million Dollars of Municipal Revenue Bonds

- No Impact on Town Budget or Resident Tax Assessments

Ashland Power Plant Secures the Borrowing

- Plant Reverts to Bond Holders in the Event of Default

Renewable Waste to Energy

What is the Environmental Impact?

Reduction of Greenhouse Gases Particularly Methane (CH4)

- Landfills Generate Significant Levels of Methane
- Less Landfill Volume = Reduction in Methane

Flue Gasses are Collected, Filtered and Cleaned

- Below Federal EPA and NHDES Emission Standards
- Emissions are Monitored Continuously
- Landfills Require Dedicated Space
 - Landfill Areas can be Used More Productively

Reduced Dependency on Fossil Fuels

Renewable Waste to Energy

Control of Emissions:

- 99.9% of Emitted Gases are Normal Components of Air
 - Nitrogen, Oxygen and Water Vapor
- **Combustion Occurs at >2000 degrees Fahrenheit**
- **Automated Air Quality Control Equipment**
 - Monitor Emissions, Process Temperatures & Steam Flow
 - Adjust Process Parameters to Maximize Air Quality
- Sulfur Dioxide Neutralized Utilizing Lime in a Scrubber Reactor
- Particulate Matter Removed in Filtered "Bag Houses"

100% of Combustion Gases are Processed Through Air Quality Control Equipment

ASHLAND POWER STATION EMISSIONS CONCENTRATION COMPARISON

The Ashland Power Station vs. A typical Truck on I-93

NO_x 70 mg/Nm3 vs 350 mg/Nm3 = Ashland is 80% less CO 89 mg/Nm3 vs 312 mg/Nm3 = Ashland is 72% less SO2 49 mg/Nm3 vs 257 mg/Nm3 = Ashland is 81% less

predicted results, not guaranteed, diesel emissions based on dieselnet.com information

WALDRON ENGINEERING & CONSTRUCTION, INC.

Renewable Waste to Energy

Financi	Dorf	orr	non	
FILIALIU	F EII		ΙΙαι	ILE

Years -3 to 0

Start-Up Years:

	Year -3	<u>Year -2</u>	<u>Year -1</u>	Year 0
Revenue	\$0	\$0	\$0	\$2,847,523
Expenses	-\$36,000	\$0	-\$146,752	-\$1,377,057
Bond Repayment	\$0	\$0	\$0	\$0
Capital Reserve Before Capital Expense	-\$36,000	\$0	-\$146,752	\$1,470,466
Capital Expense	\$0	\$0	\$0	\$0
Capital Resv Total	-\$36,000	-\$36,000	-\$182,752	\$1,287,713

Renewable Waste to Energy

Financial	Performance

Years 1 - 4

Operating Years:

	Year 1	Year 2	Year 3	Year 4
Revenue	\$16,241,541	\$19,195,964	\$ 22,404,600	\$23,510,906
Expenses	-\$7,469,047	-\$7,972,669	-\$8,510,786	-\$8,785,672
Bond Repayment	-\$9,327,983	-\$9,327,983	-\$9,327,983	-\$9,327,983
Capital Reserve	-\$555,489	\$1,895,313	\$4,565,831	\$5,397,252
Capital Expense	\$0	-\$25,000	-\$1,100,000	-\$650,000
Capital Reserve	\$732,224	\$2,602,537	\$6,068,368	\$10,815,619

Renewable Waste to Energy

Financial Performance

Future Years

Operating Years:

	<u>Year 6</u>	Year 8	<u>Year 10</u>	<u>Year 12</u>
Revenue	\$25,904,938	\$27,295,937	\$28.762,153	\$30,307,687
Expenses	-\$9,368,455	-\$9,851,380	-\$10,360,853	-\$10,898,504
Bond Repayment	-\$9,327,983	-\$9,327,983	-\$9,327,983	-\$9,327,983
Capital Reserve	\$7,208,502	\$8,116,574	\$9,073,318	\$10,081,199
Capital Expense	-\$1,900,000	-\$ 800,000	-\$920,000	-\$3,000,000
Capital Reserve	\$21,300,314	\$33,148,341	\$49,037,446	\$60,504,493

Renewable Waste to Energy

Financial Performance

Future Years

Operating Years:

	<u>Year 14</u>	<u>Year 16</u>	<u>Year 18</u>	<u>Year 20</u>
Revenue	\$31,936,859	\$33,654,230	\$35,464,610	\$38,211,601
Expenses	-\$11,446,086	-\$12,065,478	-\$12,698.702	-\$13,397,934
Bond Repayment	-\$9,327,983	-\$9,327,983	-\$9,327,983	-\$9,327,983
Capital Reserve	\$11,142,790	\$12,260,769	\$13,437.926	\$15,515,684
Capital Expense	-\$6,900,000	-\$ 320,000	-\$800,000	-\$700,000
Capital Reserve	\$74,430,809	\$96,402,309	\$121,242,007	\$149,467,288

Renewable Waste to Energy

The Claw